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Abstract

Liquid-liquid dispersions consisting of a dispersed and a continuous liquid which
are mutually unsoluble or at least almost unsoluble occur in many separation
processes. On the one hand they are intentionally produced to achieve a high
surface area per unit volume for heat and/or mass transfer, e.g., in the case of the
solvent extraction. On the other hand such dispersions sometimes occur uninten-
tionally, for instance, during the condensation of a heteroaceotropic mixture or in
the frame of wastewater treatment, e.g., after oil accidents. Under almost all
circumstances, the dispersions have to be separated into their clear homophases.
Simple gravity settlers without any coalescing aids are applied in most cases for
this purpose. Within such apparati the drops flow together (“coalesce”) and form
a coherent phase. This review discusses the physical models of gravity settlers.
Calculation methods for the coalescence of single droplets and for the coalescence
of droplet swarms in dense dispersions are reviewed. Finally, possibilities and
limitations of hydrodynamic settler modeling are pointed out.

1. INTRODUCTION
The separation of liquid-liquid dispersions in gravity settlers without
coalescing aids is governed by the interaction of various effects (7). Up to
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now a complete physical description of gravity settlers has been impossible
because several effects involved are nonquantifiable. Therefore, the design
of settlers requires extensive experimental work. On the other hand, in-
dustry is interested in simple methods for a reliable prediction of the sep-
aration process in gravity settlers.

The coalescence of drop swarms in horizontal and vertical, batchwise,
and continuously operated settlers has been intensively investigated during
the last 25 years. Different mathematical models for separation at a hor-
izontal liquid-liquid interface have been developed. One can distinguish
two major groups: The so-called “deterministic models” focus on the drain-
age of a thin layer between drop and interface or between two neighboring
drops as the governing process of coalescence in a dense-packed dispersion.
The so-called ““probability models” consider the separation to be a sto-
chastic process and try to simulate it under the assumption of distinct
probabilities of drop—drop coalescence (“ddc,” binary coalescence) and
drop-interface coalescence (“‘dic,” interfacial coalescence). Every author
has fitted his model to the specific boundary conditions of his experiments.
Among other things, this review intends to examine whether these models
can be applied to different boundary conditions.

2. COALESCENCE OF SINGLE DROPS AT
HORIZONTAL INTERFACES

The complex interactions of various influencing effects make the coa-
lescence in a gravity settler seem to be a stochastic process, because there
is little knowledge available on these effects and their interference. Fun-
damental principles of interface physics, chemistry, and colloid science that
could be adopted for the engineering treatment of the coalescence process
are missing. The first step to the theoretical calculation of settlers is an
examination of the coalescence of a single droplet at a planar interface.

2.1. Coalescence Process
According to Fig. 1, we can distinguish among three succeeding steps
of the coalescence process at a principle interface (2):

1. The drop approaches the interface, is decelerated, and occasionally
oscillates moderately. Drop and interface deform.

2. Drop and interface enclose a thin layer of continous phase which
has to drain to a critical low thickness. During the drainage the drop
apparently rests at the interface.

3. Finally, the thin layer ruptures and the drop can flow into its mother
phase. This flow-in process is often not completed and a secondary
drop remains. We call this ““partial coalescence.”
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FiG. 1. Course of the coalescence process of a single droplet at a plain interface.

The time-determining step of the whole coalescence process is the drain-
age of the thin layer. It governs the time of coalescence which characterizes
the coalescence process. Many examinations focus on this drainage process.
Its physical nature is phenomenological because it cannot be modeled
mathematically. Hartland (3) reports that the thickness of the draining
layer shows a maximum in the middle of the drop which is degraded by
the flowing out of the continuous phase. This process is called “dimpling.”
At the contact edges a minimum thickness of the layer forms; it is called
“barrier ring” (see Fig. 2).

Originally, Hartland attributed this fact to circulation inside the drop,
but he later detected the same effect during examinations of solid spheres.
Hodgson and Woods (4) focused on the influence of surface-active agents
on coalescence and found that an increasing concentration of surfactants
or the growing age of the interface amplifies the occurrence of dimpling.
They attributed this fact to a backflow of the continuous phase into the
thin layer, which is caused by gradients of the interfacial tension. Figure
3 shows that the reason for backflow, namely, the gradients of surfactants
concentration, is induced by the drainage process itself.

The Marangoni backflow into the draining layer leads to higher coales-
cence times and a strong scattering of these times. Very low amounts of
contamination, such as are evident even in highly purified technical liquid
systems, suffice to cause dimpling. That means that coalescence is always
connected with a dimpling effect! Furthermore, Hodgson and Woods (4)
showed that the contents of draining liquids within the barrier ring remain
almost constant after the backflow during the approach of the drop toward
the interface. This fact is attributed to rigid interfaces at the barrier ring.
Therefore, the drop approaches the interface only at the barrier ring while
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F1G. 2. Thickness of the enclosed thin layer under a glycerol drop in liquid paraffin according
to Hartland (3).

its radius increases. Closer considerations include the interfacial viscosity
and elasticity. The momentary state-of-the-art was reviewed by Wasan and
Malhotra (5). However, the statements are theoretical only, without any
experimental proof.

Knowledge concerning electrostatic and -kinetic influences on the coa-
lescence is restricted to the general proposition that the formation of re-
pulsing double layers hinders droplet approach. There are no models which
take this fact into account for the calculation of the thin liquid layer between
drop and interface. Chen, Hahn, and Slattery (6) recently published a
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FiG. 3. Hinderance of the drainage process and backflow due to a gradient of the inter-
facial tension.
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formulation for future modeling attempts, but, so far, it has had no practical
validity.

Mass transfer between the phases also exhibits a strong influence on the
coalescence process. Nowadays, only a qualitative estimation of whether
coalescence is favored or hindered is possible. '

On the contrary, interparticular interactions depending on the van-der-
Waals forces have been described in global numbers like the Hamaker or
London-Hamaker constant, and in this way they are accessible for physical
modeling of the coalescence process.

The hydrodynamic effects, i.e., the pressing of drops against the draining
thin layer and the flowing of a Newtonian liquid in an irregularly shaped
duct, can be modeled by using well-known hydrodynamic principles.

2.2. Models of Coalescence

As mentioned before, the drainage of the thin layer governs the coa-
lescence process and is affected by all the effects described above. The
time of coalescence, which is the difference in time between the moment
a drop reaches the principle interface and its coalescence, is a measure for
the drainage process. Balance models proposed by Hartland (8) and others
require knowledge of this parameter.

Most coalescence models either calculate the time of drainage of a thin
layer between two approaching interfaces until rupture or the approaching
velocity between two drops or a drop and a plain interface. They have
been reviewed in various papers (9-11, 13, 14, 72). In addition, there are
some models that use dimensional analysis to evaluate the time of coales-
cence (15-17). All models employing steady-state symmetrical drainage
of the thin layer are based on hydrodynamic principles. Some recent models
involve intermolecular interactions within the thin layer by incorporating
the Hamaker coefficient.

The following paragraphs describe calculation results for the models
listed in Table 1 with experimental data of Pabst (72), Charles and Mason
(18), Lawson (19), Gillespie and Rideal (20), Lang and Wilke (21) and
Jeffreys (15, 16) for toluene drops in water.

One of the earliest models was the “‘disc-model”” of Charles and Mason
(18). They computed the critical thickness of the thin layer by putting
measured coalescence times into their model formulation. The model is
based on two parallel and circle-shaped discs with rigid surfaces which
approach each other. The discs correspond to the contact area of the drop
with the interface. The radius of the contact area r;is determined according
to Derjaguin and Kussakov (see Refs. 22 and 23 and Table 1). This equation
was proved by the work of Princen (24, 25) and was used in recent papers
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concerning coalescence, e.g., that of Chen, Hahn, and Slattery (23). Hodg-
son and Woods (4) realized well-defined interfacial conditions for the co-
alescence process by applying a special cleaning device. This enabled them
to conduct reproducible coalescence experiments for the first time. They
observed that after the formation of a barrier ring, the approach process
takes place only at the barrier ring and the liquid content remains enclosed
within this ring. Figure 4 illustrates this observation. Based on this fact,
they developed their “cylinder model” for the computation of coalescence
times. It describes the drainage between the lateral area of a horizontal
cylinder and a plain interface in a simplified way in which only the flow
region outside the barrier ring is taken into account. The model of Lang
and Wilke (27) regards the coalescence process as the drainage of a thin
layer of equal thickness below a ball-shaped drop with a rigid surface. They
also calculated the critical thickness by using measured times of coales-
cence. The model of Chen, Hahn, and Slattery (23) is based on theoretical
considerations by Buevich and Lipkina (26). It takes the attracting pressure
of van der Waals into account by applying the Hamaker coefficient H, ,.
Figure 5 shows a comparison between computation results of the re-
viewed models and experimental data for the coalescence times of single
drops. The values of critical thickness 8. have been calculated according
to Vrij and Overbeek (27) and of the drop shapes according to Princen
(25). The experiments exhibit increasing times of coalescence with growing
drop diameters. From the hydrodynamic point of view, this fact is due to
the increasing contact area between the drop and the interface, which slows
down the drainage process. Wasan and Malhotra (5) pointed out that it is

24+ / barrier ring !
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FIG. 4. Time-dependent course of the thickness of the layer between an anisol droplet in
water with sodium dodecyl sulfate according to Hodgson and Woods (4).
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FiG. 5. Comparison of computed and measured times of coalescence of water droplets
in benzol.

obvious that hydrodynamic models rate this effect too high. Besides, all
models take only the symmetric drainage processes into account. In reality,
drainage is unsymmetric and therefore faster. These facts explain the higher
values of the computed times compared to the measured ones. All exper-
imental results are affected by the influence of surfactants, by electric
effects, and partly by mass transfer when they are based only on hydro-
dynamics. It is interesting that the simplest model of Hodgson and Woods
(4) shows the best correlation between computed and measured data.

3. COALESCENCE OF DROP SWARMS AT
HORIZONTAL INTERFACES
Research on single drops should provide the basis for theoretical model-
ing of the coalescence of drop swarms in liquid-liquid dispersions. How-
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ever, no way was found to transfer the results appropriately. Therefore,
the coalescence of drop swarms at horizontal interfaces in liquid-liquid
dispersions was investigated independently from the single drop consid-
erations reviewed in the previous section. Table 2 provides a survey on
most of these investigations. They have been prevailingly done in an em-
pirical manner. The physical model formulations are either based on mono-
layers or on multilayers of ball-shaped or deformed particles at the
interface. According to Lawson (/9), the coalescence of monolayers is
strongly influenced by disturbances like vibration, pressure impact, and
shock from outside, which lengthens the time of coalescence compared to
single drops. Robinson and Hartland (28), in contrast to Lawson, report
that the dense packed drops of a two-dimensional monolayer coalesce faster
than do single drops. The reason is that drainage of the thin layer between
a drop of the monolayer and its mother phase occurs faster because of the
lower depth of immersion of the drop and the smaller amount of enclosed
continuous phase. Davies, Jeffreys, and Smith (77) found that the time of
coalescence in monolayers is inverse proportional to the number of drops
related to the unit of time. The inconsistent results of investigations of
coalescence in monolayers do not allow for any conclusion on the sepa-
ration performance of dense dispersions. Therefore, most authors focus
on multilayers of drops, i.e., dense-packed dispersions, and investigate the
structure of the dispersion band in order to gain information on the coa-
lescence process.

3.1. Structure of the Dense Dispersion

Hitit (29), Allak and Jeffreys (30, 37) and Barnea and Mizrahi (32, 33)
distinguish two different regions within the dense-packed zone. Hitit, Al-
lak, and Jeffreys name them “‘floculation,” “packing,” and ‘“‘coalescence
zone.” Figure 6 schematically illustrates such a dispersion band in a vertical
settler. The floculation zone (I) is the immediate entrance region of the
drops into the dispersion band. No coalescence takes place, but the drops
arrange themselves in order by a slow sedimentation motion. The hold-up
rises erratically from its entry value of about 10% up to about 50%. It
further rises within the packing zone slowly up to about 75%, which cor-
responds to the hold-up of a dense-packed bed of spheres with equal
diameter. The drops grow by drop—drop coalescence (ddc) and adapt their
shape to their immediate environment. According to Allak and Jeffreys
(30, 31), the packing zone covers most of the dense dispersion. Again, the
hold-up rises erratically up to almost 100% with decreasing distance from
the principle interface which separates the dispersion region from the clear
mother phase of the drops. The packing zone shifts to the coalescence
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€a
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FIG. 6. Schematic illustration ot u dense dispersion band in a vertical settler when the heavier
liquid is the dispersed one.

zone (III) which has a thickness of only about one or two times that of
the drop diameter. There exist only strongly deformed drops which are
densely pressed together and exhibit the structure of dodecaders within
this zone. These deformed drops flow into the clear mother phase by drop-
interface coalescence.

By referring to their measured hold-up values of the dispersion band,
Barnea and Mizrahi (32) distinguished only two different regions. The first
region covers the flocculation and packing zone of Hitit, Allak, and Jeffreys;
the second one corresponds to the coalescence zone of these authors. The
difference between the two points of view can be attributed to the different
experimental boundary conditions. Hitit, Allak, and Jeffreys carried out
their experiments in a spray column with a relatively low hold-up of about
10%, while Barnea and Mizrahi used a mixer-settler which exhibited start-
ing values for the hold-up of between 30 and 50%. These high starting
hold-ups made it impossible to detect the flocculation zone.

All the authors agree that drainage of the continuous phase through the
packing zone governs the steady-state height of the dense dispersion band.
In addition, Hitit (29) reported that the height of the dispersion band
depends strongly on the size of the drops entering it.

Apart from this classification of different zones within (real) multilayer
dispersion bands, Doulah and Davies (7) and Hartland and Vohra (8)
proposed the dispersion of equally sized drops within the entire dispersion
band. Batch experiments conducted in mixers exhibit this idealized con-
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dition for a short time after stopping intensive mixing. However, the dis-
persion quickly adopts the multizone structure proposed by Barnea and
Mizrahi in the course of the settling process. The dispersion band decays
as long as only a monolayer is present (19, 28), which unites with the
mother phase by drop—interface coalescence.

3.2. Models of the Coalescence of Drop Swarms at Horizontal
Plain Interfaces

3.2.1. Survey on the Models

Table 2 is a collection of published models on the coalescence of drop
swarms at horizontal interfaces in primary dispersions. Many of these
models are of an empirical nature, as mentioned in the Introduction. The
experiments were carried out with mixer-settlers (horizontal settlers) or in
spray columns (vertical settlers) by using different liquid systems depending
on the point of view of the various authors. The corresponding classification
can be drawn from Table 2. Apart from the empirical models, some authors
have provided formulation for theoretical descriptions.

Most authors focus on the continuous settling process, but some try to
work out a relationship between a batch experiment and a corresponding
continuously operated settler. However, not all authors are of the opinion
that these serve their purpose. Vieler, Glasser, and Bryson (34) or God-
frey, Chang-Kakoti, and Slater (35) detected no relationship between batch
and continuous settlers although they carried out a multitude of experi-
ments. They presume that, among other reasons, the different fluid-dy-
namic processes occurring during settling are responsible for the inability
to transfer batch results to continuous settlers. The reason is that the settling
process in a batch settler occurs under almost ideal conditions, e.g., sedi-
mentation and coalescence take place in a calm, undisturbed flow regime
while an additional motion from outside is forced upon continuous operated
settlers. Over the past few years, Hartland and Jeelani (36—-40) have re-
ported that the required transfer is possible within the framework of well-
defined and sharply restricted boundary conditions. Very important pre-
conditions are the equality of drop sizes or drop size distributions, and of
the flow conditions in both the batch experiment and the continuously
operated settler.

3.2.2. Batch Settiing Process

Discontinuous phase separation happens exclusively in dense dispersion
bands of equal thickness over the entire settling surface. Batch experiments
have been carried out in discontinuously operated mixers (32, 33, 35-51,
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53-57,78) and in stand jars (58, 59), with the exception of the experiments
by Hartland (8, 60, 61) who used a spray column.

The height of the dense dispersion layer in the beginning of a batch
settling experiment generally depends on the mixing power which is sup-
plied to the two-phase system and which defines the drop size distribution.
Additionally, in the case of stirring and shaking, the mixing duration (and
in the case of jet break at orifices, the hole diameter and number) is of
great influence. The phase ratio, which can be chosen freely only for the
first two types of mixing, the liquid contents, and the type of dispersion
influence the height of dispersion considerably, too.

All the authors cited started with ideal dispersions of uniform initial drop
size distribution. The investigations aimed for the static settling time of a
primary dispersion. In most cases it has to be determined experimentally
as shown in Table 2. Reissinger et al. (59) reported that the static settling
time can be roughly estimated from the density difference according to
Figure 7, while all other material properties and parameters such as the
drop size were neglected. But deviations from the corresponding measured
values are considerably high. Slater and Ritcey (47) obtained an equation
which allows computation of the static settling time from geometric and
hydrodynamic parameters. The formulation of Loebmann and Blass (57)
requires additional parameters which characterize the mixing process, e.g.,
the resulting drop size and material properties.

Figures 8 and 9 illustrate the typical shapes of measured settling curves,
but only the models in References 37, 51, 55, 56, and 78 can reproduce
the more or less marked sigmoidal shape of the curve. In addition, cor-

1000
kg \\ volume ratio
m? O o/w
a N 1] 1
; N N 2 110
]
& 100
=
@
g N
\
o \\
20 100 s 1000

settling time t

Fic. 7. Dynamic settling times for aqueous—organic systems according to Gillespie and
Rideal (20).
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FiG. 8. Typical shape of a measured settling curve.

relation computations are necessary because between two and four con-
stants have to be determined simultaneously. The computation results can
only be proved by the experiment itself, because the calculated course of
the curve is highly dependent on the initial values. It should be mentioned
that sigmoidal settling curves not only arise in the case of the gravity settling

total height

height of dense dispersion H

Hm\

\ sedimentation and
\ coalescence
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packed \
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F1G. 9. Alteration in time of the height of the dense dispersion of a decreasing dispersion.
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of primary dispersions but also in the case of the batch separation of
secondary dispersions with the aid of thermal and electrical energy, ultra-
sonic, centrifugal energy (62), or solid additives like powder or granulate
(63).

Since the duration of the settling process is strongly determined by the
mean drop diameter at the beginning of settling (29, 47, 51, 57, 64, 65),
the course of the settling curve is no measure for the settling behavior in
a continuously operated settler. Figure 10 illustrates the relationship be-
tween the mean initial drop size and the static settling time in dimensionless
form, whereby the settling time is substituted for by the static settling
velocity (66). The abscissa shows the dimensionless settling time.

P P
Re Fr)'® = v, — 1
( ) d'“g’flclApl ()
with
H
Ud,smr = tO‘PV (2)
stat
nl
1157]
v 21(55]
ATl 3156
4 [44]
5 [41)
0 ——=2—
‘:J//f
e
:ﬁ/.l. — i -
—r -
oy Il
50"
0’ 0? o' o st

(Re-Fe)?

Fi1G. 10. Dependence between static settling velocity and initial mean drop size according to
Reference 66.
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and the ordinate the dimensionless mean drop diameter

2
an = gy, 28 120l 3)

< p('

In their latest paper, Hartland and coworkers (36) distinguish between
settling curves of sigmoidal and exponential shape without inflection points.
They report that no formation of a coalescence zone takes place if the rate
of sedimentation is lower than the rate of drop-interface coalescence
throughout the whole settling process. In this case the settling curve exhibits
an exponential shape (see Fig. 11b) and the coalescence process at the
interface is only governed by the height of the dispersion band; while any
relationship to the drop size can be neglected. The sigmoidal shape of the
settling curve points to a coalescence mechanism which depends strongly
on the drop size, while the height of the dense dispersion is of almost no
importance (see Fig. 11a).

The previous section showed that batch experiments are very useful for
obtaining qualitative information on the problems connected to the special
liquid system, e.g., on the qualitative influence of mixing intensity, phase
ratio, temperature, and surfactants. However, results drawn from batch
experiments can only be transferred to continuously operated settlers if
the boundary conditions, namely the identity of drop size distribution, flow
conditions, and material properties, are strictly obeyed. In the case of a
settler design, these requirements can hardly be fulfilled.

3.2.3. Continuous Settling Process

The genealogical tree of settler models in Fig. 12 shows that, in principle,
stochastic and deterministic models can be distinguished. Hosozawa et al.

o =
= 1 a) =71 b)
[ oy o
=] [=}
2 2
b o
@ <%
[=N =0
o @
=] =]
5 S
= =
o o
= g
- =
time t time t

Fi1G. 11. Typical shapes of settling curves when the coalescence process is governed by the
drop size (a) and when it is governed by the interfacial coalescence rate (b) according to
Hartland et al. (36).
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FiG. 12. Genealogical tree of continuously operated settlers models.

(64) and Doulah and Davies (7) assume the coalescence of drop swarms
at a horizontal interface to be a stochastic process. They simulate it on the
computer by means of the Monte-Carlo or the waiting queue method by
using special probability functions for the drop—drop and drop—interface
coalescence. The simulation models are adapted to their special boundary
conditions by fitting the probability functions to experimental data. The
authors could not obtain any possibility of a prediction of those probabil-
ities, so the models cannot be transferred to other boundary conditions
and are not suitable for a settler design. Therefore, no further details of
these models are discussed in this paper.

Reissinger et al. (59) and Slater and Ritcey (47) apply the conclusions
from the batch settling time directly to the continuous settling process. The
models of Barnea and Mizrahi (32, 33, 45, 46) and Golob and Modic (49)
allow the same conclusion if the batch experiments were carried out by
using a standard stand glass and applying equal hold-ups in the batch
experiment and the feed of the continuously operated settler. The dynamic
settling time is computed from the static one by using various empirically
fitted parameters. All other authors who have dealt with a relation between
batch and continuous settlers need additional information on the shape of
the settling curve. As mentioned in Section 3.2.2, Hartland and coworkers
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(36-40) developed a model to transfer the results drawn from batch ex-
periments to the continuous process if the batch experiment is carried out
with identical drop size distribution, material properties, and flow condi-
tions. The model is based on layer drainage, and its empirical constants
can be drawn from the batch settling curve.

The application of the models depends on whether the drop swarm
coalescence takes place in a vertical or a horizontal settler. In a vertical
settler the dispersed and continuous phase flow countercurrently through
the apparatus. Most of the authors conducted their experiments with a
static continuous phase. In the case of mixer—settler devices, one has to
distinguish additionally whether it is a one- or a multistage apparatus. In
a multistage device, both phases flow countercurrently through the whole
device, while a one-stage device exhibits cross-countercurrent. Figures 13
and 14 provide schematic illustrations of these types.

Blass, Loebmann, Meon, and Rommel (66) compared some of the re-
viewed models with the help of a specially developed computer program.
They found that only a few models can correctly be applied to other (test-
ing) conditions in addition to the original ones of each model. Those models
which could be compared showed identical tendencies in their results. The
height of the dense dispersion increases with growing drop diameters and

light phase heavy phase direction of clear coalesced
{inlet) {outlet) settling phase
{light phase

M S4 dispersed)

— dispersion

wedge continuous

phase
main flow direction

front

MN SN

| heavy phase light phase detail z of a settler

{inlet) (outlet) (highly eniarged)

F1G. 13. Schematic illustration of phase flow in a vertical settler.

coalescence

sedimentation
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F1G. 14. Schematic illustration of phase flow in a horizontal settler.

with increasing loads of the dispersed phase. The calculated absolute values
of the steady-state height differ considerably. The experimental results
conducted by some authors are well reproducible by their own equations
in many cases, but even some of the models sometimes fail in these cases.
The reason is that besides the common material properties and the oper-
ation conditions, additional effects and boundary conditions have a strong
influence on the coalescence process. That means that the models can only
work within the frame of the conditions on which the deduction of the
model is based. So far, attempts to transfer them to other boundary con-
ditions have not been successful.

4. SUMMARY

The coalescence process, i.e., the flowing together of two drops or of a
drop and a coherent liquid layer, is governed by the drainage and rupture
of a thin liquid layer which separates the two coalescence partners. The
drainage process is affected by a multitude of parameters. Although many
of those effects and their influence on coalescence is well known in a
phenomenological way, no practically applicable models exist which de-
scribe the influence of surfactants, of intermolecular interactions, of electric
effects, and of the influence of mass transfer. All models are based purely
on hydrodynamic considerations.
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Only recently have the models for single drop coalescence begun fo
regard intermolecular interactions on the drainage process by applying the
Hamaker coefficient. However, the sensitivity of this coefficient on the
computation results is not very large. Modeling of the coalescence of drop
swarms in dense dispersions has been done with both stochastic and de-
terministic models. Stochastic models always require experiments on a real,
continuously operated settler in order to evaluate the probability param-
eters. They allow simulation of existing settlers but they are not applicable
for settler design. Deterministic models which require no experiments lead
to insufficient results because they cannot evaluate nonhydrodynamic ef-
fects on the coalescence process. Those deterministic models which require
additional experiments allow settler design in principle. Depending on the
model, the experiments are carried out with batch or continuous settlers
in which all boundary conditions have to be obeyed, but the models need
information on the drop size and/or the hold-up profile and/or the tur-
bulent conditions in the dispersion zone. Normally, this information is not
available in the settler design step.

Finally, a settler design based only on hydrodynamics cannot lead to
satisfactory results. Additional effects, described above, must be incor-
porated.

NOTATION
A cross-sectional area of the settler (m?)
C G, C fitting parameters (—)
C, G constants (—)
D5 diameter of settler inlet tube (m)
Dy, height of the inlet weir (m)
d, drop diameter (m)
fo characteristic function (—)
g gravity acceleration (m/s?)
H., Hamaker coefficient (J)
H,, London-Hamaker coefficient = 1.13 x 107 J-m
H, height of the dense dispersion in a continuous settler (m)
hp height of the dense dispersion in a settler (m)
hpo initial height of the dense dispersion (m)
K constant (—)
L height of the drop above the interface (m)
Ly length of the dispersion wedge (m)
Lps length of the dispersion wedge at the settler inlet (m)
ny number of revolutions per minute (min~')
r radial distance, related radius (m)

rs radius of the contact area (m)
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R radius of curvature of the contact area (m)
T mean residence time in the settler (s)
t time (s)
t time of coalescence (s)
b static settling time (s)
1% volumetric flow rate (m’/s)
V. volumetric flow rate of the continuous phase (m®/s)
v, volumetric flow rate of the dispersed phase (m?/s)
Vi Fu volumetric flow rate of the dispersed phase at flooding con-
ditions (m3/s)
Veven limiting load of a settler (m*/s)
v velocity (m/s)
v, superficial velocity of the continuous phase (m/s)
Uy superficial velocity of the dispersed phase (m/s)
U stat static settling velocity of the continuous phase (m/s)
Udostar static settling velocity of the dispersed phase (m/s)
Uis superficial velocity profile at the settler inlet (m/s)
Wps relative swarm velocity (m/s)
v exponent (—)
Vi shape factor (—)
& thickness of the layer (m)
3(r) time depending value of the thickness (m)
. critical thickness (m)
N, dynamic viscosity of the continuous phase (kg/ms)
Na dynamic viscosity of the dispersed phase (kg/ms)
0 angle (degrees)
0y mean residence time in the dense dispersion (s)
oy phase ratio (—)
pe density of the continuous phase (kg/m°)
Pu density of the dispersed phase (kg/m?)
o interfacial tension (N/m)
T mean time of binary coalescence (s)
T mean time of interfacial coalescence (s)
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